Linear Regression Estimation Inference

Linear Regression

Dustin Pluta

2018 Statistics Bootcamp Department of Statistics University of California, Irvine

Estimation Inference

- ullet Y is an $n \times 1$ response vector
- ullet X is an $n \times p$ data matrix with full column rank
- β is a $p \times 1$ coefficient vector
- ε an $n \times 1$ random error vector with mean 0 and finite variance

The **linear regression** model writes Y as the sum of a *systematic* component $X\beta$, and a *stochastic* component ε :

$$Y = X\beta + \varepsilon.$$

Linear Regression I

Linear Regression

• If we assume $\varepsilon \sim N(0,\sigma^2 I_n)$, the induced distribution on Y is

$$Y \sim N(X\beta, \sigma^2 I_n),$$

that is, Y follows a multivariate normal distribution with mean vector $X\beta$ and variance $\sigma^2 I_n$.

- This linear regression model makes four assumptions:
 - Linearity: EY can be expressed as a linear combination of the features in X;
 - Independence of errors across observations;
 - Normally distributed error terms;
 - Homogenous (constant) variance of error terms.

Linear Regression Likelihood

Linear Regression

The likelihood for the linear regression model is

$$\mathcal{L}(\beta, \sigma^2 | X, Y) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} (Y - X\beta)^T (Y - X\beta)\right\}$$

The log-likelihood is

$$\ell(\beta, \sigma^2) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(Y - X\beta)^T(Y - X\beta).$$

Estimation

MLE of Parameters

$$\frac{\partial \ell}{\partial \beta} = -\frac{1}{\sigma^2} X^T (Y - X\beta)$$
$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} (Y - X\beta)^T (Y - X\beta)$$

Setting these to 0 and solving yields the MLE estimates for the regression parameters

MLE of Parameters

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

$$\hat{\sigma}^2 = \frac{1}{n} (Y - X \beta)^T (Y - X \beta)$$

Since the bias of $\hat{\sigma}^2$ as an estimator of σ^2 grows with the number of covariates p, it is important to instead use the unbiased variance estimator

$$s^{2} = \frac{1}{n-p}(Y - X\beta)^{T}(Y - X\beta).$$

Linear Regression Estimation Inference

\hat{eta} Bias and Variance

• $\hat{\beta}$ is unbiased:

$$\mathbb{E}\left[\hat{\beta}\right] = (X^T X)^{-1} X^T \mathbb{E}[Y]$$
$$= (X^T X)^{-1} X^T X \beta = \beta.$$

• To find the variance, we need to use the fact that for A an $n \times q$ matrix, and an $n \times 1$ random vector Y, we have $Var(A^TY) = A^TVar(Y)A$. Applying this to the equation for $\hat{\beta}$ gives

$$Var(\hat{\beta}) = Var\left((X^T X)^{-1} X^T Y\right)$$
$$= (X^T X)^{-1} X^T Var(Y) X(X^T X)^{-1}$$
$$= \sigma^2 (X^T X)^{-1}$$

Linear Regression Estimation

Distribution of $\hat{\beta}$

Since $\hat{\beta}$ is a linear transformation of the normal random vector Y, we know $\hat{\beta}$ is normally distributed, with the mean and variance we just computed:

Distribution of $\hat{\beta}$

$$\hat{\beta} \sim N\left(\beta, \sigma^2(X^T X)^{-1}\right).$$

In practice, we usually replace σ^2 with $s^2,$ and take the distribution as approximate

Approximate Distribution of $\hat{\beta}$

$$\hat{\beta} \sim N\left(\beta, s^2(X^TX)^{-1}\right).$$

Linear Regression Estimation

Distribution of $\hat{\beta}$

$$\frac{\hat{\beta}_k - \beta_k}{\hat{\mathsf{se}}(\hat{\beta}_k)} \sim t \left(n - p \right),$$

where $\hat{\operatorname{se}}(\hat{\beta}_k) = \sqrt{e_k^T s^2 (X^T X)^{-1}} e_k$, with e_k is a p-length vector with a 1 as the kth element and 0 elsewhere.

Linear Regression Estimation

Hypothesis Tests

Consider testing the hypothesis

$$\begin{cases} H_0 & \beta = \beta^0 \\ H_1 & \beta \neq \beta^0. \end{cases}$$

For this *global* test of any association we have many possible tests to choose from, for example the **Wald test** or **general** F-**test**.

Linear Regression Estimation

Test Statistic

$$T = (\hat{\beta} - \beta^0)^T Var(\hat{\beta})^{-1}(\hat{\beta} - \beta^0)$$
$$= \frac{1}{s^2}(\hat{\beta} - \beta^0)^T (X^T X)(\hat{\beta} - \beta^0)$$
$$\stackrel{H_0}{\sim} \chi^2_{n-p}$$

Linear Regression Estimation Inference

We can also use the Wald test for testing single coefficients, $H_0: \beta_k = \beta_k^0$.

Test Statistic

$$T = \frac{\hat{\beta}_k - \beta_k^0}{\hat{\mathsf{se}}(\hat{\beta}_k)} \stackrel{H_0}{\sim} t_{n-p}$$

Linear Regression Estimation Inference

We can also use the Wald test for testing arbitrary linear combinations of coefficients, $H_0: c^T\beta = c^T\beta^0$ for a $p \times 1$ contrast vector c.

Test Statistic

$$\begin{split} T &= (c^T \hat{\beta} - c^T \beta^0)^T Var(c^T \hat{\beta})^{-1} (c^T \hat{\beta} - c^T \beta^0) \\ &= (c^T \hat{\beta} - c^T \beta^0)^T [c^T Var(\hat{\beta})c]^{-1} (c^T \hat{\beta} - c^T \beta^0) \\ &= \frac{1}{s^2} (c^T \hat{\beta} - c^T \beta^0)^T [c^T (X^T X)^{-1} c]^{-1} (c^T \hat{\beta} - c^T \beta^0) \\ &\stackrel{H_0}{\sim} \chi^2_{n-p} \end{split}$$

Linear Regression Estimation

Alternatively, we can test for general linear association of X and Y with the general F-test:

Test Statistic

$$F = \frac{[(\hat{Y} - \bar{Y})^T (\hat{Y} - \bar{Y})]/(p-1)}{(Y - \hat{Y})^T (Y - \hat{Y})/(n-p)} \sim F(p-1, n-p)$$

This is often used in ANOVA.

Confidence Intervals

Linear Regression Estimation Inference

$$100(1-\alpha)\%$$
 Confidence Interval for β_k

$$\hat{\beta}_k \pm \hat{\mathsf{se}}(\hat{\beta}_k) t_{1-\alpha/2}(n-p)$$

Linear Regression Estimation Inference

Approximate $100(1-\alpha)\%$ Confidence Interval for $c^T\beta_k$

$$c^T \hat{\beta} \pm z_{1-\alpha/2} \sqrt{c^T Var(\hat{\beta})c}$$

Interpretation

Linear Regression Estimation

Let's examine the expression for $\hat{\beta}$:

MLE of Coefficient Vector

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$