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Linear Regression |

Y is an n x 1 response vector

X is an n x p data matrix with full column rank

B is a p x 1 coefficient vector

€ an n X 1 random error vector with mean 0 and finite
variance

The linear regression model writes Y as the sum of a system-
atic component X 3, and a stochastic component ¢:

Y =Xg+e.
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Linear Regression |

e If we assume ¢ ~ N(0,021,), the induced distribution on
Yis

Y ~ N(XB,0°I,),

that is, Y follows a multivariate normal distribution with
mean vector X 3 and variance o%1,,.
e This linear regression model makes four assumptions:
e Linearity: EY can be expressed as a linear combination of
the features in X;
o Independence of errors across observations;
o Normally distributed error terms;
e Homogenous (constant) variance of error terms.
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Linear Regression Likelihood

The likelihood for the linear regression model is

L(B,0%X,Y) = (QWZ)‘”/2 exp {—%(Y -xp)(y - Xﬂ)}

The log-likelihood is

(8,0%) = ~ 2 1og(2n0%) — S5 (Y — XB)" (¥ — X5).
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MLE of Parameters

o0 1 g
%__EX (Y - XB)
oy xB)T(y - Xp)

do? 202 2(02)?

Setting these to 0 and solving yields the MLE estimates for the
regression parameters

MLE of Parameters

B=(XTxX)"'xTy
1

n

6% ==(Y - XB)"(Y — Xp)
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Unbiased estimator of o2

Since the bias of 62 as an estimator of o2 grows with the
number of covariates p, it is important to instead use the
unbiased variance estimator

2 ].

= ¥ - XB(Y - XB).
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B Bias and Variance

. B is unbiased:

E [5] — (XTx)"1xTE[Y]
= (XTXx)'XTxp = 5.
e To find the variance, we need to use the fact that for A

an n X ¢ matrix, and an n x 1 random vector Y, we have
Var(ATY) = ATVar(Y)A. Applying this to the equation

A~

for B gives

Var(B) = Var (XTxX)"'XTY)
= (XTX)"'XTVar(V)X(XTX)!
— 0_2(XTX)—1
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Distribution of ,5’

Since 3 is a linear transformation of the normal random vector
Y, we know S is normally distributed, with the mean and
variance we just computed:

Distribution of /3’
B~ N (B,02(XTX)).

In practice, we usually replace o with s2, and take the distri-
bution as approximate

Approximate Distribution of 3

B AN (B sH(XTX)Y).
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Distribution of Bk

Distribution of 3

Bk - Bk
se( k)

where se(f,) = \/6%82(XTX)_16k, with ey, is a p-length
vector with a 1 as the kth element and 0 elsewhere.
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Hypothesis Tests

Consider testing the hypothesis

Hy B=p°
Hy B#p°.
For this global test of any association we have many possible

tests to choose from, for example the Wald test or general
F-test.
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Wald Test

Test Statistic

T=(8-p8""Var(3)~'(8 - 5°)
= (B~ BT (XTX)(B - 8)

~ Xn—p
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Wald Test

We can also use the Wald test for testing single coefficients,
Hy : B = f3}.

Test Statistic

/Bk - ﬁk Ho t
n—p
se(f)
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Wald Test

We can also use the Wald test for testing arbitrary linear com-
binations of coefficients, Hy : ¢! 3 = ¢T8° for a p x 1 contrast
vector c.

Test Statistic

T =(c"B— "% Var(c"B) ("5 — ')
= (c"B = BT [c"Var(B)e] ™ ("B — " B°)
_ S%(CTB _ CTBO)T[CT(XTX)_IC]_l(CTB _ CT,BO)

N
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General F'-test

Alternatively, we can test for general linear association of X
and Y with the general F-test:

Test Statistic

(Y -V - V)]/(p—1)

F= - -
Y =Y)T(Y =Y)/(n —p)

~F(p—1,n—-p)

This is often used in ANOVA.
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Confidence Intervals

100(1 — @)% Confidence Interval for Sy

B £ Se(Bi)t1—a/2(n — p)
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Confidence Intervals

Approximate 100(1 — «)% Confidence Interval for ¢T3y,

B+ Z1—a/2 IVar(B)e
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Interpretation

Let's examine the expression for j3:

MLE of Coefficient Vector

g=(XTx)"'xTy
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